Ohms Law Worksheet

Purpose: To investigate Ohm's Law using 100 resistors and a 9V power source by connecting the resistors in series and in parallel.

Procedure:

1) Connect the first 100Ω resistor to the 9 V battery.

- What is the voltage across the resistor?
- Calculate the current through the resistor.

Connect the second 100Ω resistor to the first in series.

- What is the new effective resistance?
- What is the voltage across each resistor?
- Calculate the current through each resistor.

Repeat for 3 resistors in series.
2) Connect the first 100Ω resistor to the 9 V battery. Connect the second 100Ω resistor to the first in parallel.

- What is the new effective resistance of the 2 resistors?
- What is the voltage across each resistor?
- Calculate the current through each resistor.

Repeat for 3 resistors in parallel.

1) Series Circuit:

$$
\begin{aligned}
& V=I \times R \quad I=I_{1}=I_{2}=\ldots \\
& V=V_{1}+V_{2}+\ldots \\
& R=R_{1}+R_{2}+\ldots
\end{aligned}
$$

One Resistor:
Resistance: $\mathrm{R}=$ \qquad Ω

Resistance (Ω)	Voltage (V)	Current (A)

$V=$
I = \qquad

Two Resistors:
Effective Resistance: R = \qquad Ω

Resistor \#	Voltage across (V)	Current through (A)
1		
2		

\qquad
I =
\qquad
Three Resistors:
Effective resistance: $\mathrm{R}=$ \qquad Ω

Resistor \#	Voltage Across (V)	Current through (A)
1		
2		
3		

$$
V=\ldots V
$$

I =
\qquad
2) Parallel Circuit: $\quad V=I \times R \quad V=V_{1}=V_{2}=\ldots$

$$
I=I_{1}+I_{2}+\ldots
$$

One Resistor:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \Rightarrow R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots}
$$ Ω

Resistance: $\mathrm{R}=$ \qquad

Resistance (Ω)	Voltage (V)	Current (A)

$V=$ \qquad

I = \qquad
Two Resistors:
Effective Resistance: R = \qquad Ω

Resistor \#	Voltage across (V)	Current through (A)
1		
2		

$V=$ \qquad V

$$
I=\ldots A
$$

Three Resistors:
Effective Resistance: R = \qquad Ω

Resistor \#	Voltage Across (V)	Current through (A)
1		
2		
3		

\qquad

$$
1=
$$

\qquad

