
Basic Express BX-35Basic Express BX-35Basic Express BX-35Basic Express BX-35
Application NoteApplication NoteApplication NoteApplication Note

Programming Timer1 forProgramming Timer1 forProgramming Timer1 forProgramming Timer1 for
Dual Pulse WidthDual Pulse WidthDual Pulse WidthDual Pulse Width
ModulationModulationModulationModulation

Timer1 and pulse width modulation
The BX-35 processor includes a built-in timer called Timer1. The timer can be used for several functions,
one of which is to generate dual hardware PWM outputs without CPU overhead. Pins OC1A and OC1B
are used for outputs, which are pins 19 and 18 respectively. You have a choice of 8-, 9- or 10-bit PWM
outputs, as well as a choice of several frequencies.

The timer is capable of operating at 5 discrete tick frequencies ranging from approximately 7.20 kHz to
7.37 MHz. After scaling, the tick frequency translates to PWM pulse rates ranging from 3.52 Hz (for 10-bit
outputs) to 14.4 kHz (for 8-bit outputs).

The following is a list of the major registers required for getting access to Timer1:

 Type Name Description

 Byte TCNT1L Timer/Counter1 Low Byte
 Byte TCNT1H Timer/Counter1 High Byte
 Byte TCCR1B Timer/Counter1 Control Register B
 Byte TCCR1A Timer/Counter1 Control Register A

See also pages 32 to 38 of file AT90_8535.pdf for more details on Timer1, which is actually called
Timer/Counter1. This file is provided in the BasicX installation and documents the Atmel 8535 chip, which
is used as the BX-35 processor.

Warning -- Timer1 should only be used where it does not conflict with other system resources, such as
InputCapture and OutputCapture, all of which depend on Timer1.

Programming Timer1 for dual PWM
Initialization

This example illustrates how to use Timer1 to generate 8-bit PWM outputs on pins OC1A and OC1B,
which are pins 19 and 18 respectively on the BX-35 system.

2

The first initialization step is to stop the timer:

 Register.TCCR1B = 0

The next step is to set Timer1 to 8-bit PWM mode (9- and 10-bit modes are similar):

 Const PWMmode8bit As Byte = bx0000_0001
 Const PWMmode9bit As Byte = bx0000_0010
 Const PWMmode10bit As Byte = bx0000_0011
 Const PWMmodeOff As Byte = bx0000_0000

 Register.TCCR1A = PWMmode8bit

Now we need to define the duty cycles for each pin, which are loaded in registers 0CR1A and OCR1B.
The duty cycle can be an 8, 9 or 10 bit number. In this example, we'll use 8-bit values for 25 % and 75 %
duty cycles (64 and 191). Note that high bytes must be written first for these registers:

 Register.OCR1AH = 0
 Register.OCR1AL = 64 ' = 25 %

 Register.OCR1BH = 0
 Register.OCR1BL = 191 ' = 75 %

Starting Timer1

Now we can start the timer by writing one of 5 enumerated values to the timer control register TCCR1B.
The allowable values are shown below:

 Tick 8-bit PWM
 TCCR1B Frequency Pulse Rate
 Value (Hz) (Hz)

 1 7 372 800 14 456
 2 921 600 1 807
 3 115 200 225.9
 4 28 800 56.47
 5 7 200 14.12

In this example, we'll us the lowest frequency of 7.2 kHz:

 Register.TCCR1B = 5

Here the pulse rate is equal to the Timer1 frequency divided by 510, which in this case is about 14.1 Hz.
For 9-bit outputs, the divisor is 1022, and for 10-bit outputs the divisor is 2046.

3

The last step is to connect the timer to pins OC1A and OC1B:

 Const MaskOC1A As Byte = bx1000_0000
 Const MaskOC1B As Byte = bx0010_0000

 ' Initialize both pins to output-low.
 Call PutPin(PinOC1A, bxOutputLow)
 Call PutPin(PinOC1B, bxOutputLow)

 ' Enable PWM for both pins.
 Register.TCCR1A = Register.TCCR1A Or MaskOC1A
 Register.TCCR1A = Register.TCCR1A Or MaskOC1B

After this point you can continuously vary the PWM duty cycle by writing new values to registers OCR1A
and OCR1B. The PWM outputs are generated in the background.

Example code

Source code for an example program is provided as a separate file. The filename is PWMexample.bas.

 1998-2001 by NetMedia, Inc. All rights reserved.

Basic Express, BasicX, BX-01, BX-24 and BX-35 are trademarks of NetMedia, Inc.

All other trademarks are the property of their respective owners.

2.00.A

