Netmedia>

Basic Express

ABBIication Note
Decoding GPS Text Data

Using BasicX

Introduction

GPS receivers are generally capable of transmitting data in several formats. One format, called Simple
Text Output protocol, is one of several modes available from GARMIN® receivers such as eTrex™. The
format is documented here:

http://www.garmin.com/support/text out.html

In this format, GPS data consists of a simple 7 bit ASCII text string with a constant length of 57 bytes. On
eTrex receivers, the string is transmitted about once per second.

A BasicX microcontroller can be used to extract GPS time, position and velocity data embedded in the
text strings. Single precision floating point variables are used to store 3D position and velocity fixes.

Hardware interface

Figure 1 (below) illustrates the hardware interface between a GPS receiver and BasicX system:

GPS
Receiver

10k

Setial In —N\——— Serial Out

Gnd i Gnid

Figure 1

BasicX

The BasicX serial input pin number on depends on the system. For BX-01 systems, port Com2 is used on
pin 12. For BX-24 and BX-35 systems, port Com3 is used on pin 16.

If you use a GARMIN eTrex or similar receiver, it should be set to “text out” mode at 1200 baud.

http://www.garmin.com/support/text_out.html

O S

Software Interface

In the BasicX demonstration program, GPS data is decoded and written to the following arrays:

Name Type Dimensions
TimeGPS Byte 6
Position Float 3
Velocity Float 3

Each array element is defined as follows:

Array

Element Definition
TimeGPS (1) Year (2 digit)
TimeGPS (2) Month

TimeGPS (3) Day

TimeGPS (4) Hour

TimeGPS (5) Minute

TimeGPS (6) Second
Position (1) Longitude (deg)
Position(2) Latitude (deg)
Position(3) Altitude (m)
Velocity (1) East (m/s)
Velocity(2) North (m/s)
Velocity (3) Up (m/s)

For position fixes, the sign convention is such that North latitude is positive and South is negative.
Similarly East longitude is positive and West is negative. Position and velocity vectors are oriented
assuming a right-hand coordinate system.

Whenever a GPS fix is decoded, selected elements are also transmitted out the BasicX Com1 serial port
configured to 19 200 baud, 8 data bits, 1 stop bit, no parity. Example format:

Time: 16:27:48
Lat: 32.33132°
Lon: -111.0172°
Alt: 741 m

Ve: 1.5 m/s
Vn: 0.2 m/s
Vu: 0.01 m/s

Sometimes the GPS receiver may not pick up signals from enough satellites for complete position and
velocity fixes. In these cases, data may not be available, or may be only partially available. The text string
typically includes underscore characters in fields that are not available.

O S

If this happens, the BasicX program displays asterisks in fields that are affected. As an example, if time is
available, but position and velocity are not, the following format is displayed:

Time: 16:27:48
Lat:
Lon:
Alt:

Ve:
vn:
Vu:

L R I R

Raw text display. Instead of decoded data, you can choose to display untranslated text as received from
the GPS receiver. In the main program, the Boolean constant RawText controls this selection. A typical
line of raw text looks like this:

@021021183228N3224250W11056803G006+00782E0000N0O000U0O001

Program listing. The program GPSTextDecoder consists of the following 4 modules, which are included
as separate files along with this application note:

GPSTextDecoder.bas — Includes the main program and other high level code
GPSDriver.bas — Does the low level decoding of text data
GPSSerialPort.bas — Handles the GPS serial port

GPSPinAssignments.bas -- Defines the serial I/O pin number and port number
Each file is listed on the following pages.

The program is written for a BX-24 system. If you want to port the program to other BasicX systems, most
code changes should be localized to module GPSPinAssignments, and are flagged by comments.

O S

Module GPSTextDecoder

Attribute VB Name = "GPSTextDecoder"

Option Explicit

Private Const YearIndex As Byte =1
Private Const MonthIndex As Byte = 2
Private Const DayIndex As Byte = 3
Private Const HourIndex As Byte = 4
Private Const MinuteIndex As Byte = 5
Private Const SecondIndex As Byte = 6
Private TimeGPS (1l To 6) As Byte
Private Position(l To 3) As Single
Private Velocity (1l To 3) As Single
Private TimeIsValid As Boolean
Private PositionIsValid As Boolean
Private VelocityIsValid As Boolean
Private Const EastIndex As Byte =1
Private Const NorthIndex As Byte = 2
Private Const UpIndex As Byte = 3

Public Sub Main ()

' This program decodes GPS data in Garmin Simple Text Output format. The GPS
' data is received over a serial port.

' Set this flag to true to display raw text from the GPS receiver.
Const RawText As Boolean = False

Call Initialize

Debug.Print

Debug.Print "GPS text decoder"

Delay 0.5

Debug.Print

Debug.Print "Waiting for GPS data..."
Debug.Print

If (RawText) Then
Call DisplayRawText
End If

Do
Call GetFixGPS (TimeGPS, Position, Velocity, TimeIsValid,
PositionIsValid, VelocityIsValid)

Call DisplayData
Loop

End Sub

Private Sub DisplayRawText ()
' This procedure displays raw text received from the GPS receiver.
Do

Debug.Print Chr (GetByte) ;
Loop

Private Sub Initialize()
Dim N As Byte
TimeIsValid = False
PositionIsValid = False
VelocityIsValid = False
Call InitializeGPS

Private Sub DisplayData()

' This procedure displays decoded GPS data.
Const Deg As Byte = 176 ' Degree symbol.
Debug.Print
Debug.Print " Time: "

If (TimeIsValid) Then
Call DisplayTime
Else
Debug.Print "*"

End If

If (PositionIsValid) Then

Debug.Print " Lat: "; CStr(Position (NorthIndex)); Chr (Deg)
Debug.Print " Lon: "; CStr(Position(EastIndex)); Chr (Deg)
Debug.Print " Alt: "; CStr(Position (UpIndex)) ; " om"
Else
Debug.Print " Lat: *"
Debug.Print " Lon: *"
Debug.Print " Alt: *"
End If

If (VelocityIsValid) Then

Debug.Print " Ve: "; CStr(Velocity (EastIndex)) ; " m/s"
Debug.Print " Vn: "; CStr(Velocity (NorthIndex)); " m/s"
Debug.Print " Vu: "; CStr(Velocity (UpIndex)) ; " m/s"
Else
Debug.Print " Ve:
Debug.Print " Vn: *"
Debug.Print " Vu: o *
End If

Public Sub DisplayTime ()
' This procedure displays time in HH:MM:SS format.

Dim B As Byte
Dim MSDig As Byte
Dim LSDig As Byte

B = TimeGPS (HourIndex)

LSDig = B Mod 10

B =B\ 10

MSDig = B Mod 10

Debug.Print Chr (MSDig + 48) & Chr(LSDig + 48) & ":";

B = TimeGPS (MinuteIndex)

LSDig = B Mod 10

B =B\ 10

MSDig = B Mod 10

Debug.Print Chr (MSDig + 48) & Chr(LSDig + 48) & ":";

B = TimeGPS (SecondIndex)

LSDig = B Mod 10

B =B\ 10

MSDig = B Mod 10

Debug.Print Chr (MSDig + 48) & Chr (LSDig + 48)

O S

Module GPSDriver

Attribute VB Name = "GPSDriver"

Option Explicit

' TimeGPS indexes.

Private Const YearIndex As Byte =1
Private Const MonthIndex As Byte = 2
Private Const DayIndex As Byte = 3
Private Const HourIndex As Byte = 4
Private Const MinuteIndex As Byte = 5
Private Const SecondIndex As Byte = 6
' FixGPS indexes.

Private Const LonDegIndex As Byte = 1
Private Const LonMinIndex As Byte = 2
Private Const LatDegIndex As Byte = 3
Private Const LatMinIndex As Byte = 4
Private Const AltIndex As Byte = 5
Private Const VelEIndex As Byte = 6
Private Const VelNIndex As Byte = 7
Private Const VelUIndex As Byte = 8

Private PositionStatus As Byte
Private EPH As Integer

Private Const ChrPlus As Byte = 43 !
Private Const ChrEast As Byte = 69 !
Private Const ChrNorth As Byte = 78 !
Private Const ChrUp As Byte = 85 !

=z M+

Private Const MaxDigits As Byte = 5
Private PowTenLookup (1l To MaxDigits) As Integer

Private DataIsValid As Boolean

Public Sub InitializeGPS()

PowTenLookup (1) = 1
PowTenLookup (2) = 10
PowTenLookup (3) = 100
PowTenLookup (4) = 1000
PowTenLookup (5) = 10000

Call OpenSerialPortGPS

End Sub

Public Sub GetFixGPS(_
ByRef TimeGPS() As Byte,
ByRef Position() As Single,
ByRef Velocity() As Single, _
ByRef TimeIsValid As Boolean, _
ByRef PositionIsValid As Boolean,
ByRef VelocityIsValid As Boolean)

Const SentenceStart As Byte = 64 ''@"
Dim N As Byte
Dim Temp As Byte

Dim Sign As Integer
Dim FixGPS (LonDegIndex To VelUIndex) As Integer

' Start sentence ' Character
B ' Position
Do Until (GetByte = SentenceStart) vl
' Null
Loop
' Time

DataIsvValid = True
TimeIsValid = True

For N = 1 To 6
TimeGPS (N) = CByte (GetNumber (2)) 2 .. 13
Next

' Error check.

If (Not DataIsValid) Then
TimeIsValid = False

End If

DatalIsValid = True
PositionIsValid = True

' Latitude.

Sign = GetSign (ChrNorth) ' 14
FixGPS (LatDegIndex) = GetNumber (2) * Sign '15 .. 16
FixGPS (LatMinIndex) = GetNumber (5) 17 .. 21
' Longitude

Sign = GetSign (ChrEast) ' 22
FixGPS (LonDegIndex) = GetNumber (3) * Sign '23 .. 25
FixGPS (LonMinIndex) = GetNumber (5) ' 26 .. 30
PositionStatus = GetByte '31

EPH = GetNumber (3) ''32 .. 34

O S

' Altitude.
Sign = GetSign (ChrPlus) ' 35
FixGPS (AltIndex) = GetNumber (5) * Sign ''36 .. 40

' Error check.

If (Not DataIsValid) Then
PositionIsValid = False

End If

DatalIsValid = True
VelocityIsValid = True

' Velocity east/west.
Sign = GetSign (ChrEast) '41
FixGPS (VelEIndex) = GetNumber (4) * Sign ' 42 .. 45

' Velocity north/south.
Sign = GetSign (ChrNorth) ' 46
FixGPS (VelNIndex) = GetNumber (4) * Sign ''47 .. 50

' Velocity up/down.
Sign = GetSign (ChrUp) ' 51
FixGPS (VelUIndex) = GetNumber (4) * Sign ' 52 .. 55

' Error check.

If (Not DatalIsValid) Then
VelocityIsValid = False

End If

Temp = GetByte ' 56
Temp = GetByte ' 57

Position(1l) = ToDegrees (FixGPS (LonDegIndex), FixGPS (LonMinIndex))
Position(2) = ToDegrees (FixGPS (LatDegIndex), FixGPS (LatMinIndex))
Position(3) = CSng(FixGPS (AltIndex))

Velocity (1) = CSng(FixGPS(VelEIndex)) / 10.0
Velocity(2) = CSng(FixGPS (VelNIndex)) / 10.0
Velocity(3) = CSng(FixGPS (VelUIndex)) / 100.0

Public Function GetNumber (

ByVal DigitCount As Byte) As Integer

This function converts a decimal string to an integer. The string is of
' length DigitCount.

Each character must be a decimal digit -- otherwise the character is
' illegal. If any illegal characters are found, they're treated as
' equivalent to "O0" and the error flag DatalIsValid is set to False.

Dim PowTen As Integer
Dim N As Byte
Dim InByte As Byte

PowTen = PowTenLookup (DigitCount)
GetNumber = 0

For N = 1 To DigitCount
InByte = GetByte

' Check for legal decimal digit.
If (InByte >= 48) And (InByte <= 57) Then
GetNumber = GetNumber + (CInt (InByte - 48) * PowTen)
Else
DataIsvValid = False
End If

PowTen = PowTen \ 10
Next

End Function
Public Function GetSign(_
ByVal Value As Byte) As Integer
' This function reads a byte and returns a sign value that depends on the
' specified number Value. If the new byte matches, the sign is positive.
' Otherwise the sign is negative.

If (GetByte = Value) Then
GetSign = 1

Else
GetSign = -1

End If

End Function

10

Public Function GetByte() As Byte

This function reads the next byte from the input device. If the byte matches
' InvalidTag, the flag DatalIsValid is set to False.

Const InvalidTag As Byte = 95 ' " "

GetByte = GetByteGPS

If (GetByte = InvalidTag) Then
DatalIsValid = False
End If

End Function

Private Function ToDegrees(_
ByVal Degrees As Integer, _
ByVal mMinutes As Integer) As Single

Converts integer degrees/minutes to float degrees. Note that mMinutes are
' in units of 10”3 minutes.

Dim Deg As Single
Dim Frac As Single

Deg = CSng(Degrees)
If (Deg >= 0.0) Then

Frac = CSng(mMinutes)
Else

Frac = -CSng(mMinutes)

End If

' Convert to fractional degrees.
Frac = Frac / 60000.0

ToDegrees = Deg + Frac

End Function

11

O S

Module GPSSerialPort

Attribute VB Name = "GPSSerialPort"
Option Explicit

Private Const InputQueueSize As Integer = 10 ' 1 byte buffer.
Private Const OutputQueueSize As Integer = 10 ' 1-byte buffer.

Private InputQueue(l To InputQueueSize) As Byte
Private OutputQueue (1 To OutputQueueSize) As Byte

Private Const Baud As Long = 1200
Private Const NullOutputPin As Byte = 0
Public Sub OpenSerialPortGPS()
Call OpenQueue (InputQueue, InputQueueSize)
Call OpenQueue (OutputQueue, OutputQueueSize)
If (PortNumber = 3) Then
' Inverted logic, no parity, 8 data bits.
Call DefineCom3 (SerialInputPin, NullOutputPin, bx1000 1000)

End If

Call OpenCom(PortNumber, Baud, InputQueue, OutputQueue)

Public Function GetByteGPS() As Byte
Dim Value As Byte
Call GetQueue (InputQueue, Value, 1)
GetByteGPS = Value

End Function

12

O S

Module GPSPinAssignments

Attribute VB Name = "GPSPinAssignments"

Option Explicit
' This module defines port and I/O pin numbers.

' BX-01 assignments.
'>>Public Const PortNumber As Byte = 2
'>>Public Const SerialInputPin As Byte = 12

' BX-24 assignments.
Public Const PortNumber As Byte = 3
Public Const SerialInputPin As Byte = 16

' BX-35 assignments.
'>>Public Const PortNumber As Byte = 3
'>>Public Const SerialInputPin As Byte = 16

© 2002 by NetMedia, Inc. All rights reserved.

Basic Express, BasicX, BX-01, BX-24 and BX-35 are trademarks of NetMedia, Inc.
GARMIN is a registered trademark and eTrex is a trademark of GARMIN Corporation.
All other trademarks are the property of their respective owners.

2.01C

13

	Software Interface
	GPSPinAssignments.bas	-- Defines the serial I/O pin number and port number

