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1 Introduction

The demonstration proposed in this report is one in which a closed loop of chain is fitted

onto a wooden cylinder and spun up to a large rotational speed with an electric motor. The

chain is then nudged off the cylinder with a stick or screwdriver and will retain its circular

shape and roll across the floor in a straight path until eventually coming to rest in a pile.

There are two complimentary explanations for the behavior of the chain: centripetal

force and conservation of angular momentum. The chain retains its shape because of the

inertia of each of its links which tend to move in a straight line tangent to the circle. This

tendency is ascribed to a centripetal force acting toward the center of the circle in order

to keep the chain from flying apart. The conservation of angular momentum requires that

the chain continues rotating (conserving both the magnitude and direction of total angular

momentum) until sufficient frictional torque brings it to rest.

This report will begin by deriving the equations for circular and angular motion rele-

vant to the demonstration. The report then uses these principles and applies them to the

rolling chain in order to calculate theoretical quantities of interest. The report will conclude

with a brief outline of a presentation and a feasibility plan for project completion by the

recommended deadline.

2 Theory

The basic equations for circular and angular motion are derived from first principles

starting with uniform circular motion and ending with the conservation of angular momen-

tum. Many of the derivations are reduced to their simplest form in an attempt to offer clear

and concise explanations without the complexity of calculus.

2.1 Uniform Circular Motion

Any object that moves in a circular path with speed v has a velocity vector whose

direction is continually changing but magnitude remains constant. Since the direction of the
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velocity vector is constantly changing in order to remain tangential to the circular path, the

object must experience an acceleration as acceleration is defined as the rate of change of

velocity. Hence, any object undergoing uniform circular motion experiences an acceleration

even though its speed remains constant.

If we look at the change in velocity by comparing two infinitesimally close velocity vectors,

v1 and v2, we can see that because both vectors must be tangential to the circle, then

∆v = v2 − v1 must point toward the center of the circular path. Because the acceleration

a must also point in the same direction as ∆v, the acceleration experienced is called a

centripetal acceleration.

We can derive the magnitude of the centripetal acceleration by noting that the time it

takes a point to complete a circular path of radius r (also known as the object’s period,

T ) can be written as T = 2πr
v

. Similarly, this quantity can also be written as T = 2πv
a

.

Equating these two expressions for T allows us to solve for a, the magnitude of the centripetal

acceleration:

a =
v2

r
.

Thus, an object moving in a circular path with radius r at a constant speed v experiences an

acceleration whose direction is toward the center of the circular path and magnitude is v2

r
.

By Newton’s Second Law, an object of mass m traveling in a circular path will experience a

centripetal force, F, toward the center of the path whose magnitude is given by

F = ma = m
v2

r
.

2.2 Angular Motion

It is useful to define the measurement of angles in radians instead of degrees when

working with circular motion. One radian is defined as an angle subtended by an arc with

length equivalent to the circle’s radius. Any angle θ can be defined in radians as

θ =
l

r

where l is the length of the arc along the circumference of the circular path and r is the

path’s radius. Note that the radian is actually a dimensionless quantity as it simply the ratio
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of two lengths. Also note that degrees can be converted to radians (or vice versa) using the

relationship

360o = 2π radians

where the left-hand side is the number of complete degrees in a circle and the right-hand

side is the number of complete radians. From this, we can see that 1 rad ≈ 57.3o.

Every point on a rigid body rotating about a fixed axis moves in the same circular path:

each point will sweep out the same angle θ in the same time. When a rigid body body

rotates in a circular path from some initial angle θ1 to some final angle θ2 in some time ∆t,

we can define a vector quantity called the angular velocity, ω, whose magnitude is given

as

ω =
∆θ

∆t
=

dθ

dt

in the limit as ∆t→ 0 (where ∆θ = θ2 − θ1). Each point on the body moves with the same

angular velocity. Note that angular velocity is expressed in units of radians per second. To

find the direction of the vector quantity ω we use the right-hand rule. When the fingers of

the right hand are curled around the axis of rotation and point in the direction of rotation,

then the thumb gives the direction of ω. Notice that no point on the rotating body actually

moves in the direction of ω as it is always parallel to the axis of rotation.

If we consider a point at a distance r from the axis of rotation that is rotating with angular

velocity magnitude ω, we can say that the point will have a linear velocity v tangential to

the circle with magnitude

v = ωr.

An object’s period of rotation T is inversely related to its frequency f as in T = 1
f

where f is often expressed in revolutions per second. We can now relate an object’s angular

velocity magnitude to its frequency as

ω = 2πf

since one revolution corresponds to an angle of 2π radians.
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2.3 Angular Momentum

The linear momentum quantity p = mv has a rotational analog known as angular

momentum. This vector quantity, often expressed as L, takes the form

L = r× p

for an object moving in uniform circular motion at a radius r. The units of angular mo-

mentum are kilograms meters squared per second. To find the direction of the angular

momentum vector, we also use the right-hand rule. When the fingers point in the direction

of r and they curl toward the direction of v, the right thumb will point in the direction of L.

For a rigid body rotating about a fixed axis, the direction of the angular momentum vector

can be taken to be the same as the direction of the angular velocity vector, ω. This is true

only if the axis of rotation is perpendicular to the plane of the body (like a bicycle wheel).

There also exists an angular analog to the conservation of linear momentum. Like linear

momentum, angular momentum is always conserved if the net external torque acting on a

system is zero. We can rewrite the angular momentum of a system in a more suggestive

manner in order to make its conservation law look similar to the one for linear momentum

(p = mv = constant where both the magnitude and direction of p are conserved). The

first thing we need to do is substitute ω = v
r

into our equation for angular momentum. In

order to neglect the cross-product, we can also take the direction of L to be the same as the

direction of ω for the reasons described above. So our equation for L simplifies to:

L = mr2ω.

Now, if we define a quantity called the moment of inertia, I, and set it equal to mr2 in

the formula above for L, we can write

L = Iω

which looks very similar to the equation for linear momentum. Hence, the conservation of

angular momentum can be written in the form

Iω = constant.

And this is true for all rigid bodies rotating about a fixed axis when there is no external
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torque. The fact that we set I = mr2 in this derivation is specific to a hoop of radius r

rotating about a fixed axis. The moments of inertia for other rotating bodies are different

although the general formula for angular momentum of L = Iω remains the same (the

general formula for the moment of inertia is I =
∑

mir
2
i ). Since our demonstration involves

a rolling chain, we can approximate it’s moment of inertia with the moment of inertia for

a hoop rotating about an axis drawn through its center. We can see the conservation of

angular momentum in action if we picture a figure skater doing on spin on ice: the skater

rotates faster when more mass is concentrated toward the axis of rotation.

3 Demonstration

The demonstration of the rolling chain is discussed with reference to many of the deriva-

tions made above. Quantities of interest, such as the translational velocity of the rolling

chain, are calculated. The section concludes by attributing the behavior of the rolling chain

to the two complementary principles at work: centripetal force and conservation of angular

momentum.

3.1 Apparatus

In this demonstration, a flexible, circular loop of chain is spun up to a large angular

velocity and fitted onto a wooden cylinder by using a high speed AC motor. When the chain

is spinning fairly fast, it is then nudged off the cylinder and proceeds to roll along the floor

and over obstacles, maintaining its circular shape, until sufficient frictional torque brings it

to rest.
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The materials required for the apparatus are as follows: a loop of bicycle chain with

inner diameter 20 cm, a short wooden cylinder of diameter 20 cm, an AC electric drill, a

screwdriver, and a speed sensor. The wooden cylinder is fitted into the end of the electric drill

which will be used to spin the chain up to approximately 1000 revolutions per minute. Once

at this angular velocity, the chain will be worked off the cylinder by using the screwdriver.

When it is released, the chain will grab the floor and roll along undergoing pure rotation

without slipping like a rigid wheel. The speed of the rolling chain will be measured in order

to compare both the theoretical and experimental speed of the chain in a class discussion.

A picture of the apparatus is shown below.

3.2 Application

This demonstration illustrates many of the physical principles of circular motion discussed

earlier. For a circular object spinning at 1000 revolutions per minute, we can calculate the

speed of the chain after it leaves the wooden cylinder using our equation relating angular

velocity and linear velocity. We know that f = 1000
60

revolutions per second and ω = 2πf =

2π 1000
60

radians per second. Thus, we can calculate the translational speed after the chain

leaves the cylinder as

v = ωr = (2π
1000

60
rads/s)(0.1 m) = 10.5 m/s

where the units of v are in meters per second. This speed is roughly the same as the average

speed of an Olympic sprinter running the 100 m dash.
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Each link on the bicycle chain acts like a point that follows a circular path. In order

for the chain to retain is circular shape while it is rolling along the ground, each link must

experience a net force toward to center of the chain resulting from the two tension forces

acting on it by neighboring links. This net force toward the center of the circular path is

equivalent to the centripetal force. Below is an image of the free-body diagram of a single

chain link.

To calculate the value of the tension force, T, that a chain link experiences by each

neighboring link, we need some simple values. A chain link, measured from pin to pin, is

1.27 cm long (this corresponds to the value for d in the image above). If we are going to use

a 20 cm diameter (which is approximately a 60 cm circumference) chain, then we need 50

chain links which will form an almost circular 50-sided polygon. Using the interior angles

of a 50-sided polygon, the angles drawn between the tension forces and the net centripetal

force are 82.8o in the image above. The mass of each chain link is 2.8 g.

We know that each link travels in a circular path with linear velocity vector, v, tangential

to the path. The speed v of each link is 10.5 m/s. We note that there are a total of two

different forces acting on each chain link: gravitational force and centripetal force. The

gravitational force can be calculated as Fg = mg = 0.0274 N. The centripetal force (due to

the two tension forces from neighboring links) is calculated as Fc = mv2

r
= 3.09 N. Since

Fc >> Fg for each link, we can neglect Fg when determining the magnitude of the tension

force from each neighboring link.

Since the net force due to the two tension forces must point toward the circle’s center,

we can see that the tangential components of the tension forces cancel. The net force we

are interested in is then simply the sum of the radial components of the two tension forces.
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This net force must equal the centripetal force calculated above. Thus, we can write

2T cos 82.8o =
mv2

r
= 3.09 N

and solving for T , we find T = 12.3 N. Because of the small angle between each link, the

tension force due to each neighboring link is nearly 4 times the total centripetal force.

The behavior of the chain can also be explained in terms of the conservation of angular

momentum. Once the chain is spinning at a high revolutions per minute, its angular mo-

mentum will be conserved even after it has left the cylinder and begins to roll along the

floor. The total angular momentum of the chain immediately before and just after it leaves

the cylinder must be equal. The value for the chain’s angular momentum can be calculated

as

L = mr2ω = (0.14 kg)(0.12 m2)(2π
1000

60
rads/s) = 0.15 kg m2/s

where the mass used here is the total mass of all 50 links in the chain. This quantity for

angular momentum is conserved once the chain is released from the wooden cylinder, which

offers a complementary explanation as to why the chain continues to roll until sufficient

frictional torque brings it to rest.

Due to the law of conservation of angular momentum, not only is to the magnitude of the

angular momentum conserved when the chain leaves the wooden cylinder, but its direction

is conserved as well (since angular momentum is a vector quantity). In this demonstration,

the reason as to why the chain continues to roll in a line parallel to its initial position on

the wooden cylinder is because the direction of the chain’s angular momentum is conserved.

This can be thought of more intuitively if we picture the chain flying off the wooden cylinder

horizontally; the chain will still retain its circular shape and will fly across the room like a

saucer instead of rolling along the ground.

4 Conclusion

This demonstration will be presented to students in high school classrooms ranging from

Physics 11 to Physics 12. In order to convey the importance of the physical principles behind

circular and angular motion, many examples will be given in either the form of questions

or simple, supplementary demonstrations. Students will be asked to participate in these
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demonstrations either physically or verbally.

During the rolling chain demonstration, the speed of the chain will be measured in order

to compare an experimental speed with the theoretical one derived in class. A difference

between the two should conclude the presentation with a discussion on other factors at work

that we have neglected, such as friction and the slight flattening of the chain as it rolls along

the floor.
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