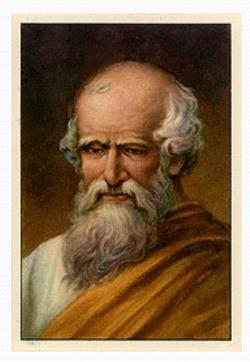
Fluid Flow

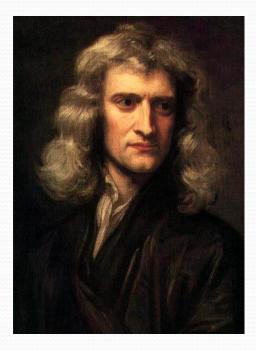
Paul Drosinis UBC Phys 420


Introduction

- Short history on fluid dynamics
- Why bother studying fluid flow?
- Difference between Newtonian and Non-Newtonian Fluids
- Laminar vs. Turbulent Flow and the Navier-Stokes Equation
- Reynolds Number

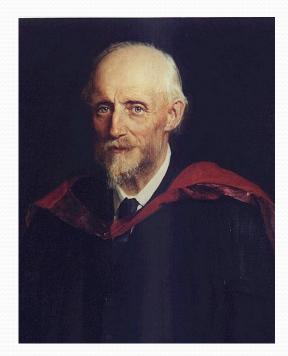
Brief History

Archimedes (285-212 B.C.)


 formulated law of
 buoyancy and applied it to
 floating and submerged
 bodies

ischoolsfndiloy.wordpress.com

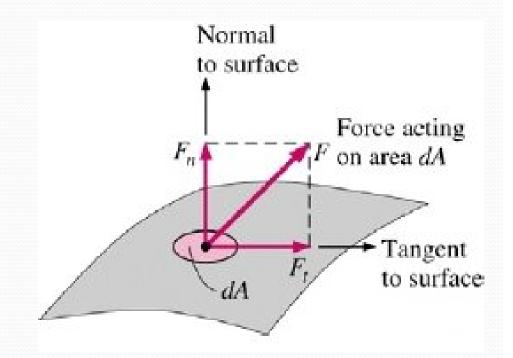
Brief History


- Isaac Newton (1642-1727) postulated laws of motion and law of viscosity of linear fluids
- Frictionless fluids many problems solved by great mathematicians (Euler, Lagrange, Laplace, Bernoulli etc.)

http://psychogeeks.com/isaac-newton/

Brief History

 Osborne Reynolds (1842-1912) – classic pipe experiment illustrating importance of so-called 'Reynolds Number'


http://en.academic.ru/dic.nsf/enwiki/191600

Why Study Fluid Flow?

- Widely applicable to many phenomena: blood flow through arteries/veins, automotive design, aeronautics
- Deeper understanding can be used to design faster and more efficient ships/airplanes

Stress and Shear

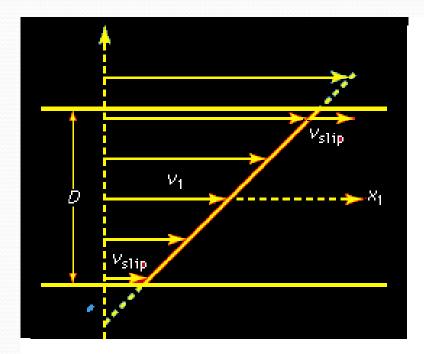
- Stress: defined as force per unit area
- -has magnitude and direction
- Can have both normal and tangential stresses

http://www.scribd.com/doc/10119418/Fluid-Mechanics-Lecture-Notes-1

Finding Newton's Law of Viscosity

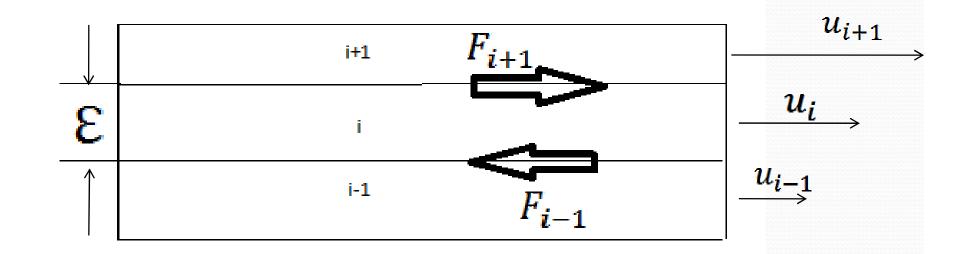
• We are going to model a 'block of fluid' as many sheets stacked on top of one another

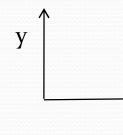
 In this way we can figure out how the shear force is related to the viscosity


What is viscosity?

- Property of a fluid that describes its ability to resist flow
- It's a measure of the internal friction associated with this flow

Substance	Viscosity(kg/m*s)
Air	0.02
Water	1.00
Milk	1.13
Blood	4
Olive Oil	90
Motor Oil	320


Stress and Shear

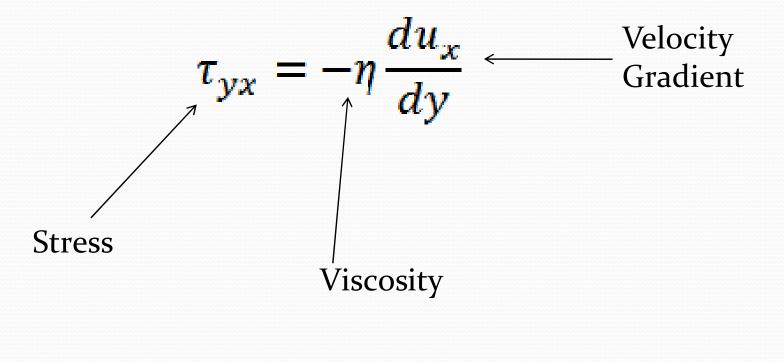

 Force in a fluid acts along the surface of each sheet and is proportional to the relative velocity

http://www.britannica.com/EBchecked/topic/211272/fluid-mechanic

Finding Shear Force

X

Finding Shear Force


- Forces act parallel to the sheets
- If we talk about force per unit area, find that:

$$\tau_{yx} \propto (u_{i+1} - u_i) + (u_{i-1} - u_i)$$

• As E gets smaller, the difference becomes a gradient

Shear Stress

• If we model a body of fluid as composed of many thin sheets, find that:

Finding Shear Force

Constant of proportionality here is the viscosity: η

• What are its units?

Units of Viscosity $[\eta] = \frac{N}{m^2} \left(\frac{m}{s} \frac{1}{m}\right)^{-1}$ N * s $\overline{m^2}$ kg m * s

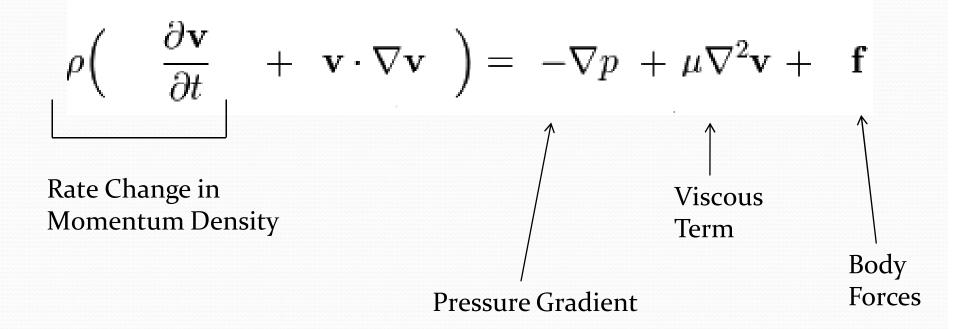
Newtonian vs. Non Newtonian Fluid

- Linear dependence of shear stress with velocity gradient: Newton's Law of Viscosity
- Viscosity will change only if temperature or pressure changes
- Don't resist much when a force is applied

• Ex: water

Newtonian vs. Non Newtonian Fluid

Non-Newtonian fluids will change viscosity when a force is applied


• Can cause them to become thicker or thinner depending on the substance in question

DEMO!

Navier-Stokes Equation

- Set of non-linear partial differential equations that describe fluid flow
- Also used to model weather patterns, ocean currents, and airflow around objects
- Very difficult equation to solve

Navier-Stokes Equation

Reynolds Number

• Ratio of inertial forces to viscous forces in a fluid

- Describes the relative importance of each term
- Important factor in determining the transition from laminar to turbulent flow

Reynolds Number

• Can be calculated from the Navier-Stokes equation

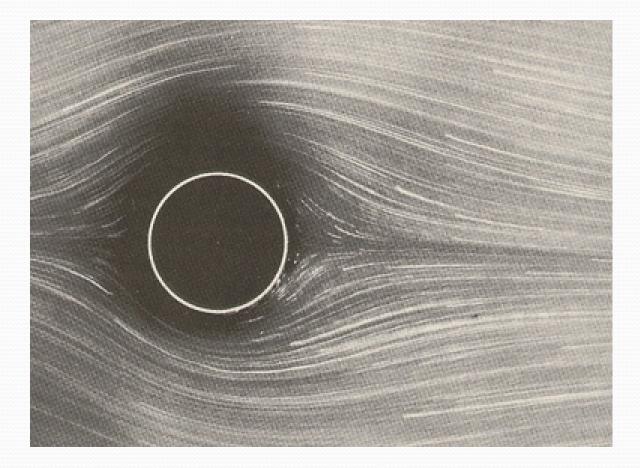
• More intuitively:

nertial	<u>cinetic</u> d
	$* d^2$
ρ	$u^2 d^3$
$=-\frac{\eta}{\eta}$	$\frac{d}{\frac{u}{d}d^2}$
$=-\frac{\eta}{\eta}$	$\frac{d}{\frac{u}{d}d^2}$

Reynolds Number $Re = \frac{\rho u d}{\eta}$

- η viscosity
- ρ density
- u velocity
- d characteristic length

Reynolds Number Units?


$$[Re] = \frac{\left(\frac{kg}{m^3}\right)\left(\frac{m}{s}\right)(m)}{\left(\frac{kg}{m*s}\right)}$$

• Reynolds number is dimensionless!

Laminar Flow

- Fluid travels smoothly in similar paths
- No mixing between adjacent 'sheets' of fluid
- Sheets slide over one another
- All flow properties constant at any given point (velocity, pressure, etc.)

Laminar Flow

https://wiki.brown.edu/confluence/display/PhysicsLabs/PF

Turbulent Flow

- Formation of eddies and vortices associated with high Reynolds number fluids
- Flow becomes chaotic
- Complete description of turbulent flow still an unsolved problem of physics

Turbulent Flow

http://www.colorado.edu/MCEN/flowvis/gallerie/2010/Team-1/FV_popup1-8.htm

Laminar vs. Turbulent Flow

- Fluids behave very differently depending on the value of the Reynolds number
- Low Re Laminar Flow
- High Re Turbulent Flow

Questions?